腰椎 固定 術 再 手術 ブログ

Sat, 06 Jul 2024 10:36:00 +0000

モンテカルロ法の具体例として,円周率の近似値を計算する方法,およびその精度について考察します。 目次 モンテカルロ法とは 円周率の近似値を計算する方法 精度の評価 モンテカルロ法とは 乱数を用いて何らかの値を見積もる方法をモンテカルロ法と言います。 乱数を用いるため「解を正しく出力することもあれば,大きく外れることもある」というランダムなアルゴリズムになります。 そのため「どれくらいの確率でどのくらいの精度で計算できるのか」という精度の評価が重要です。そこで確率論が活躍します。 モンテカルロ法の具体例として有名なのが円周率の近似値を計算するアルゴリズムです。 1 × 1 1\times 1 の正方形内にランダムに点を打つ(→注) 原点(左下の頂点)から距離が 1 1 以下なら ポイント, 1 1 より大きいなら 0 0 ポイント追加 以上の操作を N N 回繰り返す,総獲得ポイントを X X とするとき, 4 X N \dfrac{4X}{N} が円周率の近似値になる 注: [ 0, 1] [0, 1] 上の 一様分布 に独立に従う二つの乱数 ( U 1, U 2) (U_1, U_2) を生成してこれを座標とすれば正方形内にランダムな点が打てます。 図の場合, 4 ⋅ 8 11 = 32 11 ≒ 2. 91 \dfrac{4\cdot 8}{11}=\dfrac{32}{11}\fallingdotseq 2. 91 が π \pi の近似値として得られます。 大雑把な説明 各試行で ポイント獲得する確率は π 4 \dfrac{\pi}{4} 試行回数を増やすと「当たった割合」は に近づく( →大数の法則 ) つまり, X N ≒ π 4 \dfrac{X}{N}\fallingdotseq \dfrac{\pi}{4} となるので 4 X N \dfrac{4X}{N} を の近似値とすればよい。 試行回数 を大きくすれば,円周率の近似の精度が上がりそうです。以下では数学を使ってもう少し定量的に評価します。 目標は 試行回数を◯◯回くらいにすれば,十分高い確率で,円周率として見積もった値の誤差が△△以下である という主張を得ることです。 Chernoffの不等式という飛び道具を使って解析します!

  1. モンテカルロ法 円周率 考察
  2. モンテカルロ 法 円 周杰伦
  3. モンテカルロ法 円周率 エクセル
  4. モンテカルロ法 円周率 原理
  5. 【艦これ】Prinz Eugen改(プリンツ・オイゲン)の性能と評価 | 神ゲー攻略
  6. オイゲン・フォン・ザヴォイエン - Wikipedia
  7. 【モデル配布】重巡洋艦 プリンツ・オイゲン Ver1 【MMD艦これ】 / RGM さんのイラスト - ニコニコ静画 (イラスト)
  8. 【AC】引いて来たよ、引いて来たとも!! | コウのAC艦隊運用術・改三
  9. コミュニティ - 艦これアーケード 攻略まとめWiki

モンテカルロ法 円周率 考察

5)%% 0. 5 yRect <- rnorm(1000, 0, 0. 5 という風に xRect, yRect ベクトルを指定します。 plot(xRect, yRect) と、プロットすると以下のようになります。 (ここでは可視性重視のため、点の数を1000としています) 正方形っぽくなりました。 3. で述べた、円を追加で描画してみます。 上図のうち、円の中にある点の数をカウントします。 どうやって「円の中にある」ということを判定するか? 答えは、前述の円の関数、 より明らかです。 # 変数、ベクトルの初期化 myCount <- 0 sahen <- c() for(i in 1:length(xRect)){ sahen[i] <- xRect[i]^2 + yRect[i]^2 # 左辺値の算出 if(sahen[i] < 0. 25) myCount <- myCount + 1 # 判定とカウント} これを実行して、myCount の値を4倍して、1000で割ると… (4倍するのは2. より、1000で割るのも同じく2. より) > myCount * 4 / 1000 [1] 3. 128 円周率が求まりました。 た・だ・し! 我々の知っている、3. 14とは大分誤差が出てますね。 それは、点の数(サンプル数)が小さいからです。 ですので、 を、 xRect <- rnorm(10000, 0, 0. 5 yRect <- rnorm(10000, 0, 0. 5 と安直に10倍にしてみましょう。 図にすると ほぼ真っ黒です(色変えれば良い話ですけど)。 まあ、可視化はあくまでイメージのためのものですので、ここではあまり深入りはしません。 肝心の、円周率を再度計算してみます。 > myCount * 4 / length(xRect) [1] 3. モンテカルロ 法 円 周杰伦. 1464 少しは近くなりました。 ただし、Rの円周率(既にあります(笑)) > pi [1] 3. 141593 と比べ、まだ誤差が大きいです。 同じくサンプル数をまた10倍してみましょう。 (流石にもう図にはしません) xRect <- rnorm(100000, 0, 0. 5 yRect <- rnorm(100000, 0, 0. 5 で、また円周率の計算です。 [1] 3. 14944 おっと…誤差が却って大きくなってしまいました。 乱数の精度(って何だよ)が悪いのか、アルゴリズムがタコ(とは思いたくないですが)なのか…。 こういう時は数をこなしましょう。 それの、平均値を求めます。 コードとしては、 myPaiFunc <- function(){ x <- rnorm(100000, 0, 0.

モンテカルロ 法 円 周杰伦

Pythonでモンテカルロ法を使って円周率の近似解を求めるというのを機会があってやりましたので、概要と実装について少し解説していきます。 モンテカルロ法とは モンテカルロ法とは、乱数を用いてシミュレーションや数値計算を行う方法の一つです。大量の乱数を生成して、条件に当てはめていって近似解を求めていきます。 今回は「円周率の近似解」を求めていきます。モンテカルロ法を理解するのに「円周率の近似解」を求めるやり方を知るのが一番有名だそうです。 計算手順 円周率の近似値を求める計算手順を以下に示します。 1. 「1×1」の正方形内にランダムに点を打っていく (x, y)座標のx, yを、0〜1までの乱数を生成することになります。 2. モンテカルロ法と円周率の近似計算 | 高校数学の美しい物語. 「生成した点」と「原点」の距離が1以下なら1ポイント、1より大きいなら0ポイントをカウントします。(円の方程式であるx^2+y^2=1を利用して、x^2+y^2 <= 1なら円の内側としてカウントします) 3. 上記の1, 2の操作をN回繰り返します。2で得たポイントをPに加算します。 4.

モンテカルロ法 円周率 エクセル

0: point += 1 pi = 4. 0 * point / N print(pi) // 3. 104 自分の環境ではNを1000にした場合は、円周率の近似解は3. モンテカルロ法 円周率 原理. 104と表示されました。 グラフに点を描写していく 今度はPythonのグラフ描写ライブラリであるmatplotlibを使って、上記にある画像みたいに点をプロットしていき、画像を出力させていきます。以下が実際のソースです。 import as plt (x, y, "ro") else: (x, y, "bo") // 3. 104 (). set_aspect( 'equal', adjustable= 'box') ( True) ( 'X') ( 'Y') () 上記を実行すると、以下のような画像が画面上に出力されるはずです。 Nの回数を減らしたり増やしたりしてみる 点を打つ回数であるNを減らしたり、増やしたりしてみることで、徐々に円の形になっていく様子がわかっていきます。まずはNを100にしてみましょう。 //ここを変える N = 100 () Nの回数が少ないため、これではまだ円だとはわかりづらいです。次にNを先程より100倍して10000にしてみましょう。少し時間がかかるはずです。 Nを10000にしてみると、以下の画像が生成されるはずです。綺麗に円だとわかります。 標準出力の結果も以下のようになり、円周率も先程より3. 14に近づきました。 試行回数: 10000 円周率: 3. 1592 今回はPythonを用いて円周率の近似解を求めるサンプルを実装しました。主に言語やフレームワークなどのベンチマークテストなどの指標に使われたりすることもあるそうです。 自分もフレームワークのパフォーマンス比較などに使ったりしています。 参考資料

モンテカルロ法 円周率 原理

146になりましたが、プロットの回数が少ないとブレます。 JavaScriptとPlotly. jsでモンテカルロ法による円周率の計算を散布図で確認 上記のプログラムを散布図のグラフにすると以下のようになります。 ソースコード グラフライブラリの読み込みやラベル名の設定などがあるためちょっと長くなりますが、モデル化の部分のコードは先ほどと、殆ど変わりません。