腰椎 固定 術 再 手術 ブログ

Mon, 29 Jul 2024 21:26:55 +0000

Abstract

『アンネの日記〈研究版〉』に記載された「隠れ家」住人8人の誕生日の贈答品における食べ物の内容を分析した. 「隠れ家」生活期間におとずれた16回の誕生日のうち, 11回の日記記載が認められた. 「隠れ家」生活初期には, 新しく始まった共同生活を享受して食事会も催されていた. 誕生日プレゼントにおける食品の割合は, 「隠れ家」生活初期に比べて中期・後期は高くなり, その内容は, 保管できる缶詰類や配給切符で占められるようになった. それに伴い, 誕生日プレゼントの楽しみの一つである菓子類の割合は低くなった. そして非食品では生活必需品が用いられるようになっていった. アンネの日記 : 研究版 (文芸春秋): 1994|書誌詳細|国立国会図書館サーチ. 終期には, 戦下の物資不足により, 思うように品物が入手できない状況になっても, どうにか贈り物を調達して誕生会が開かれていた. 閉塞空間の中で誕生日を互いに祝う事が, 「隠れ家」の住人にとって憩いのひとときを提供していたと考えられ, そのため「隠れ家」外の協力者たちも, 誕生会開催に向けて協力を惜しまなかった姿が見られた.

Among the birthday presents for eight people living in hiding, as written about in The Diary of Anne Frank –The critical edition–, food was investigated. Eleven out of sixteen diary articles were found during their life in hiding. The residents and their associates enjoyed lunch parties in the early period. Particularly in the middle and later period, the birthday gifts consisted of food like canned products, which were able to be stored for a long period of time, and ration coupons for food. On the contrary, gifts of sweets, which were normally popular birthday gifts, decreased.

アンネの日記 : 研究版 (文芸春秋): 1994|書誌詳細|国立国会図書館サーチ

1 図書 アンネ・フランクの生涯 Lee, Carol Ann, 深町, 真理子(1931-) DHC 7 大いなる大地 Welty, Eudora, 1909-2001, 深町, 真理子(1931-) 角川書店 2 アンネの日記: 完全版 Frank, Anne, 1929-1945, 深町, 真理子(1931-) 文藝春秋 8 邪魔をしないで Spark, Muriel, 1918-, 深町, 真理子(1931-) 早川書房 3 アンネの日記 9 コナン・ドイル Symons, Julian, 1912-, 深町, 真理子(1931-) 東京創元社 4 10 白い牙 London, Jack, 1876-1916, 深町, 真理子(1931-) 光文社 5 翻訳者の仕事部屋 深町, 真理子(1931-) 飛鳥新社 11 アンネの日記: 光ほのかに Frank, Anne, 1929-1945, 皆藤, 幸蔵(1904-1983) 文藝春秋新社 6 野性の呼び声 12 模索する近代日中関係: 対話と競存の時代 貴志, 俊彦 (1959-), 谷垣, 真理子(1960-), 深町, 英夫(1966-) 東京大学出版会

」と店から追いだされたり、本屋によっては「日本人にはアンネの本は売れない」と拒否されたという(訳者の一人 [ 誰? ]

5 y <- rnorm(100000, 0, 0. 5 for(i in 1:length(x)){ sahen[i] <- x[i]^2 + y[i]^2 # 左辺値の算出 return(myCount)} と、ただ関数化しただけに過ぎません。コピペです。 これを、例えば10回やりますと… > for(i in 1:10) print(myPaiFunc() * 4 / 100000) [1] 3. 13628 [1] 3. 15008 [1] 3. 14324 [1] 3. 12944 [1] 3. 14888 [1] 3. 13476 [1] 3. 14156 [1] 3. 14692 [1] 3. 14652 [1] 3. 1384 さて、100回ループさせてベクトルに放り込んで平均値出しますか。 myPaiVec <- c() for(i in 1:100) myPaiVec[i] <- myPaiFunc() * 4 / 100000 mean(myPaiVec) で、結果は… > mean(myPaiVec) [1] 3. 141426 うーん、イマイチですね…。 あ。 アルゴリズムがタコだった(やっぱり…)。 の、 if(sahen[i] < 0. 25) myCount <- myCount + 1 # 判定とカウント ここです。 これだと、円周上の点は弾かれてしまいます。ですので、 if(sahen[i] <= 0. 25) myCount <- myCount + 1 # 判定とカウント と直します。 [1] 3. モンテカルロ法で円周率を求める?(Ruby) - Qiita. 141119 また誤差が大きくなってしまった…。 …あんまり関係ありませんでしたね…。 といっても、誤差値 |3. 141593 - 3. 141119| = 0. 000474 と、かなり小さい(と思いたい…)ので、まあこんなものとしましょう。 当然ですけど、ここまでに書いたコードは、実行するたび計算結果は異なります。 最後に、今回のコードの最終形を貼り付けておきます。 --ここから-- x <- seq(-0. 5, length=1000) par(new=T); plot(x, yP, xlim=c(-0. 5)) myCount * 4 / length(xRect) if(sahen[i] <= 0. 25) myCount <- myCount + 1 # 判定とカウント} for(i in 1:10) print(myPaiFunc() * 4 / 100000) pi --ここまで-- うわ…きったねえコーディング…。 でもまあ、このコードを延々とCtrl+R 押下で図形の描画とπの計算、両方やってくれます。 各種パラメータは適宜変えて下さい。 以上!

モンテカルロ法 円周率 求め方

Pythonでモンテカルロ法を使って円周率の近似解を求めるというのを機会があってやりましたので、概要と実装について少し解説していきます。 モンテカルロ法とは モンテカルロ法とは、乱数を用いてシミュレーションや数値計算を行う方法の一つです。大量の乱数を生成して、条件に当てはめていって近似解を求めていきます。 今回は「円周率の近似解」を求めていきます。モンテカルロ法を理解するのに「円周率の近似解」を求めるやり方を知るのが一番有名だそうです。 計算手順 円周率の近似値を求める計算手順を以下に示します。 1. 「1×1」の正方形内にランダムに点を打っていく (x, y)座標のx, yを、0〜1までの乱数を生成することになります。 2. 「生成した点」と「原点」の距離が1以下なら1ポイント、1より大きいなら0ポイントをカウントします。(円の方程式であるx^2+y^2=1を利用して、x^2+y^2 <= 1なら円の内側としてカウントします) 3. モンテカルロ法で円周率を求めるのをPythonで実装|shimakaze_soft|note. 上記の1, 2の操作をN回繰り返します。2で得たポイントをPに加算します。 4.

モンテカルロ 法 円 周杰伦

0ですので、以下、縦横のサイズは1. 0とします。 // 計算に使う変数の定義 let totalcount = 10000; let incount = 0; let x, y, distance, pi; // ランダムにプロットしつつ円の中に入った数を記録 for (let i = 0; i < totalcount; i++) { x = (); y = (); distance = x ** 2 + y ** 2; if (distance < 1. 0){ incount++;} ("x:" + x + " y:" + y + " D:" + distance);} // 円の中に入った点の割合を求めて4倍する pi = (incount / totalcount) * 4; ("円周率は" + pi); 実行結果 円周率は3. 146 解説 変数定義 1~4行目は計算に使う変数を定義しています。 変数totalcountではランダムにプロットする回数を宣言しています。 10000回ぐらいプロットすると3. 14に近い数字が出てきます。1000回ぐらいですと結構ズレますので、実際に試してください。 プロットし続ける 7行目の繰り返し文では乱数を使って点をプロットし、円の中に収まったらincount変数をインクリメントしています。 8~9行目では点の位置x, yの値を乱数で求めています。乱数の取得はプログラミング言語が備えている乱数命令で行えます。JavaScriptの場合は()命令で求められます。この命令は0以上1未満の小数をランダムに返してくれます(0 - 0. 999~)。 点の位置が決まったら、円の中心から点の位置までの距離を求めます。距離はx二乗 + y二乗で求められます。 仮にxとyの値が両方とも0. 5ならば0. 25 + 0. 25 = 0. 5となります。 12行目のif文では円の中に収まっているかどうかの判定を行っています。点の位置であるx, yの値を二乗して加算した値がrの二乗よりも小さければOKです。今回の円はrが1. 0なので二乗しても1. 0です。 仮に距離が0. 5だったばあいは1. 0よりも小さいので円の中です。距離が1. モンテカルロ法による円周率の計算など. 0を越えるためには、xやyの値が0. 8ぐらい必要です。 ループ毎のxやyやdistanceの値は()でログを残しておりますので、デバッグツールを使えば確認できるようにしてあります。 プロット数から円周率を求める 19行目では円の中に入った点の割合を求め、それを4倍にすることで円周率を求めています。今回の計算で使っている円が正円ではなくて四半円なので4倍する必要があります。 ※(半径が1なので、 四半円の面積が 1 * 1 * pi / 4 になり、その4倍だから) 今回の実行結果は3.

024\)である。 つまり、円周率の近似値は以下のようにして求めることができる。 N <- 500 count <- sum(x*x + y*y < 1) 4 * count / N ## [1] 3. 24 円周率の計算を複数回行う 上で紹介した、円周率の計算を複数回行ってみよう。以下のプログラムでは一回の計算においてN個の点を用いて円周率を計算し、それを\(K\)回繰り返している。それぞれの試行の結果を に貯めておき、最終的にはその平均値とヒストグラムを表示している。 なお、上記の計算とは異なり、第1象限の1/4円のみを用いている。 K <- 1000 N <- 100000 <- rep(0, times=K) for (k in seq(1, K)) { x <- runif(N, min=0, max=1) y <- runif(N, min=0, max=1) [k] <- 4*(count / N)} cat(sprintf("K=%d N=%d ==> pi=%f\n", K, N, mean())) ## K=1000 N=100000 ==> pi=3. モンテカルロ法 円周率. 141609 hist(, breaks=50) rug() 中心極限定理により、結果が正規分布に従っている。 モンテカルロ法を用いた計算例 モンティ・ホール問題 あるクイズゲームの優勝者に提示される最終問題。3つのドアがあり、うち1つの後ろには宝が、残り2つにはゴミが置いてあるとする。優勝者は3つのドアから1つを選択するが、そのドアを開ける前にクイズゲームの司会者が残り2つのドアのうち1つを開け、扉の後ろのゴミを見せてくれる。ここで優勝者は自分がすでに選んだドアか、それとも残っているもう1つのドアを改めて選ぶことができる。 さて、ドアの選択を変更することは宝が得られる確率にどの程度影響があるのだろうか。 N <- 10000 <- floor(runif(N) * 3) + 1 # 宝があるドア (1, 2, or 3) <- floor(runif(N) * 3) + 1 # 最初の選択 (1, 2, or 3) <- floor(runif(N) * 2) # ドアを変えるか (1:yes or 0:no) # ドアを変更して宝が手に入る場合の数を計算 <- (! =) & () # ドアを変更せずに宝が手に入る場合の数を計算 <- ( ==) & () # それぞれの確率を求める sum() / sum() ## [1] 0.