腰椎 固定 術 再 手術 ブログ

Wed, 26 Jun 2024 00:33:42 +0000

ディープラーニングとは 機械学習の分野においては必ず出てくる ディープラーニング 。聞いたことはあるもののどういうものなのかまでは知らないという人も少なくありません。ここではディープラーニングについて簡単に説明します。人間というのは、与えられた情報をそのまま使用するだけでなく、時にはその情報を元に様々な行動をしたり、また新たな情報を学習することがあります。その 与えられた情報を元にまた新たな情報を学ぶ ということを、ディープラーニングといいます。 AIが進歩した要因の一つとして、この ディープラーニングの進化が影響 しています。与えられた情報を記憶したり、その情報を伝えるまでの段階が機械学習だとすると、ディープラーニングはそのさらに先の段階となります。与えられた情報を元に新たなことを学習したり、その情報を元に有益な情報などを提供する、これがAIにおけるディープラーニングなのです。 ニューラルネットワーク=線形代数?

【2021年度】統計検定準1級に合格しました。 - Syleir’s Note

色んな概念を知ることよりも、この辺りを手を動かして計算して基礎体力をつける方が有益そう。 必要なの?というもの 上記の内容を見ると、いわゆる大学で初めて触れる線形代数の内容はそこまで入ってないことに気付く。 いや、上記内容もやるか。ただ高校のベクトルや行列の話から概念としてとても新しいものはない、みたいな感じ? (完全に昔の話を忘れてるのでそうじゃないかも) 準同型定理とか次元定理とかジョルダン標準系とかグラム・シュミットの直交化とか、線形代数の講義で必ず出くわすやつらはほとんどの場合いらない。 ベクトル空間の定義なんかも持ち出す必要性が生じることがほぼない。 機械学習の具体例として、SVMとか真面目にやるなら再生核ヒルベルト空間が必要だろ、と怒る人がいるかもしれない。 自分はそういうのも好きな方なので勉強したけど、自分以外の人からは聞いたことは(学会以外では)ほぼない。 うーむ、線形代数と聞いて自分が典型的に思い浮かべるものはそんなに必要ないのでは? みんなどういう意味で「線形代数はやっとけ」と言っているのだろうか?

数学は数Ⅱまでと思っていた工業高校出身のエンジニアが『Itと数学』で数学の独学を始めました②|Papadino|Note

?」となる人も多そうですがコードで書けば「ある値を最小or最大にするパラメータを探索して探すループ文」でしかないんですよね(うっかりするとその辺の関数使えばおしまい)。この辺は我慢強さとかも重要なのかなぁと、数学が大の苦手な身としては思ってます。 そして、 機械学習 も含めてもっと一般的な「数式をプログラミングで表すためのテクニック」に関しては、ズバリ@ shuyo さんの名スライド「 数式を綺麗にプログラミングするコツ #spro2013 」を参照されることをお薦めいたします。これは何回読んでもためになる素晴らしい資料です。特にこの資料の中にある多項ロジットの数式のR, Python への書き換えパートを読むと、非常に参考になるのではないかと思います。 最後に もちろん、上に挙げた程度の数学では足りないというシチュエーションが沢山あることは承知しております。例えば以前HSICの論文を読んだ時は、再生核 ヒルベルト 空間とか 作用素 とか測度論系の用語とかがズラリと出てきて、全力で轟沈したのを覚えています。。。(泣) ということもあるので、もちろん数学に長けているに越したことはないと思います。特に毎週のように arXiv に上がってくる最新の 機械学習 ・数理 統計学 の論文を読みこなしたいとか、NIPS / KDD / AAAI / ICML / ACL etc. と言ったトップカンファレンスの採択論文を読んで実装してみたいとか思うのであれば、数学の知識が相応の分野と相応のレベルにまたがってあった方が良いのは間違いないでしょう。 ただし、単に 実装済 みのものが提供されている 機械学習 の各種手法の「ユーザー」である限りはやはり程度問題でしょうし、TensorFlowでゴリゴリNN書くなら上記のレベルの数学ぐらいは知っておいても損はないのかなと考える次第です。 あとこれは思い出話になりますが、以前 非線形 カーネル SVM のSMOを生実装で書いた *4 時に結構細かい アルゴリズム を書く羽目になった上に、 ラグランジュ の未定乗数法を幾星霜ぶりかにやったので、その辺の数学も多少は分かった方が無難だと思います。 と、あまりこういうことばかり書くとインターネットの向こう側から「お前の 機械学習 の数学の理解は全て間違っているので理論書を最初から読み返せ」「測度論と ルベーグ 積分 もっと勉強しろ」「 汎関数 中心極限定理 もっと勉強しろ」とか大量のプレッシャーが降り注いできてその恐怖に夜も眠れなくなってしまうので、戯言はこの辺にしておきます。。。

1 3次元空間にベクトルを描く 3. 2 3次元のベクトル演算 3. 3 内積: ベクトルの揃い具合いを測る 3. 4 外積: 向き付き面積を計算する 3. 5 3次元物体を2次元でレンダリングする 第4章 ベクトルやグラフィックスを座標変換する 4. 1 3次元物体を座標変換する 4. 2 線形変換 第5章 行列で座標変換を計算する 5. 1 線形変換を行列で表現する 5. 2 さまざまな形状の行列を解釈する 5. 3 行列を用いてベクトルを平行移動する 第6章 より高い次元へ一般化する 6. 1 ベクトルの定義を一般化する 6. 2 異なるベクトル空間を探索する 6. 3 より小さなベクトル空間を探す 6. 4 まとめ 第7章 連立1次方程式を解く 7. 1 アーケードゲームを設計する 7. 2 直線の交点を求める 7. 3 1次方程式をより高次元で一般化する 7. 4 1次方程式を解いて基底を変換する [第2部] 微積分と物理シミュレーション 第8章 変化の割合を理解する 8. 1 石油量から平均流量を計算する 8. 2 時間ごとに平均流量をプロットする 8. 3 瞬間流量を近似する 8. 4 石油量の変化を近似する 8. 5 時間ごとの石油量をプロットする 第9章 移動する物体をシミュレーションする 9. 1 等速運動をシミュレーションする 9. 2 加速度をシミュレーションする 9. 3 オイラー法を深く掘り下げる 9. 4 より小さな時間ステップでオイラー法を実行する 第10章 文字式を扱う 10. 1 数式処理システムを用いて正確な導関数を求める 10. 2 数式をモデル化する 10. 3 文字式が計算できるようにする 10. 4 関数の導関数を求める 10. 5 微分を自動的に行う 10. 6 関数を積分する 第11章 力場をシミュレーションする 11. 1 ベクトル場を用いて重力をモデル化する 11. 2 重力場をモデル化する 11. 3 アステロイドゲームに重力を加える 11. 4 ポテンシャルエネルギーを導入する 11. 5 勾配を計算しエネルギーから力を導く 第12章 物理シミュレーションを最適化する 12. 1 発射体のシミュレーションをテストする 12. 2 最適到達距離を計算する 12. 3 シミュレーションを強化する 12. 4 勾配上昇法を利用し到達距離を最適化する 第13章 音をフーリエ級数で分析する 13.