腰椎 固定 術 再 手術 ブログ

Sat, 10 Aug 2024 09:37:25 +0000

MathWorld (英語).

  1. 【数学】メネラウスの定理:覚え方のコツ! ~受験の秒殺テク(3)~ | 勉強の悩み・疑問を解消!小中高生のための勉強サポートサイト|SHUEI勉強LABO
  2. メネラウスの定理,チェバの定理
  3. メネラウスの定理・チェバの定理・徹底解剖! | 高校数学の無料オンライン学習サイトko-su-
  4. 【高校数学】「チェバの定理」と「メネラウスの定理」の証明と覚え方 | スタディ・タウン 学び情報局
  5. CMの解答 | 富山県の家庭教師・個別指導なら | 【公式】富山県家庭教師協会
  6. まとめすぎた高校入試の因数分解難問~難関私立の問題 | 猫に数学
  7. 【中3数学】整数問題の良問とその解説! 難関私立高校過去問より ~定期テストや高校入試に~ - レオンの中学数学探検所

【数学】メネラウスの定理:覚え方のコツ! ~受験の秒殺テク(3)~ | 勉強の悩み・疑問を解消!小中高生のための勉強サポートサイト|Shuei勉強Labo

メネラウスの定理とその覚え方を紹介します. メネラウスの定理 メネラウスの定理 とは,三角形と,その頂点を通らないひとつの直線があるときに成り立つ線分の比に関する定理です.証明は 平行線と比の定理 を $2$ 回用いることにより示せます. メネラウスの定理,チェバの定理. メネラウスの定理: $△ABC$ の辺 $BC, CA, AB$ またはそれらの延長が,三角形の頂点を通らない直線 $l$ とそれぞれ $P, Q, R$ で交わるとき,次の等式が成り立つ. $$\frac{BP}{PC}\frac{CQ}{QA}\frac{AR}{RB}=1$$ 証明: $△ABC$ の頂点 $C$ を通り,直線 $l$ に平行な直線を引き,直線 $AB$ との交点を $D$ とする.平行線と比の定理より, $$BP:PC=BR:RD$$ すなわち, $$\frac{BP}{PC}=\frac{BR}{RD} \cdots (1)$$ 同様に, $$AQ:QC=AR:RD$$ より, $$\frac{CQ}{QA}=\frac{DR}{RA} \cdots(2)$$ $(1), (2)$ より, $$\frac{BP}{PC}\frac{CQ}{QA}\frac{AR}{RB}=\frac{BR}{RD}\frac{DR}{RA}\frac{AR}{RB}=1$$ 三角形と,その頂点を通らない直線の配置は上図のように $2$ パターンあります.ひとつは,直線が三角形の $2$ 辺と交わる場合で,もうひとつは三角形と交わらない場合です.そのどちらについてもメネラウスの定理は成り立ちます.上の証明はどちらの図の状況に対しても成り立つことを確認してみてください. メネラウスの定理の逆 メネラウスの定理は 逆 の主張が成り立ちます.証明にはメネラウスの定理を用います. メネラウスの定理の逆: $△ABC$ の辺 $BC, CA, AB$ またはそれらの延長上に,それぞれ点 $P, Q, R$ があり,この $3$ 点のうち,$1$ 個または $3$ 個が辺の延長上の点であるとする.このとき, が成り立つならば,$3$ 点 $P, Q, R$ は一直線上にある. 証明: 直線 $QR$ と辺 $BC$ の延長との交点を $P'$ とすると,メネラウスの定理より, $$\frac{BP'}{P'C}\frac{CQ}{QA}\frac{AR}{RB}=1$$ 仮定より, よって,$$\frac{BP}{PC}=\frac{BP'}{P'C}$$ $P, P'$ はともに辺 $BC$ の延長上の点なので,$P'$ は $P$ に一致する.

メネラウスの定理,チェバの定理

メネラウスの定理は、とにかく図とともにしっかりと目で見て覚えることが大切です。 チェバの定理との違いも押さえて、しっかりとマスターしておきましょう!

メネラウスの定理・チェバの定理・徹底解剖! | 高校数学の無料オンライン学習サイトKo-Su-

スポンサーリンク メネラウスの定理の証明 では、メネラウスの定理をざっくりと証明していきたいと思います。 今回は、一番簡単な面積比を使ってみたいと思います。 さて、図に何本か直線を引きました。これによって、三角形がたくさんできましたね。 緑色の△の面積を a 、黄色の△の面積を b 、赤色の△の面積を c とおくと… まず、緑色の△と黄色の△とに注目します。それぞれの三角形は、高さが等しいので三角形の面積の比はそれぞれの底辺の長さの比になります。よって、 $$\frac{a+b}{b} = \frac{BP}{CP} $$ となります。これより、同様に$\frac{b}{c} = \frac{CQ}{QA} $ となります。 そして、「緑色の△プラス黄色の△」と赤色の△ですが、これはPQが等しいために面積の比は高さの比になります。よって、 $$\frac{c}{a+b} = \frac{AR}{RB} $$ となります。これらすべてを掛け算すると… $$\frac{c}{a+b}\times\frac{a+b}{b} \times\frac{b}{c} $$ $$= \frac{AR}{RB} \times \frac{BP}{CP} \times\frac{CQ}{QA}=1 $$ となり、メネラウスの定理が証明できました! なんだかスッキリしないかもしれませんが、メネラウスの証明が問題になることはほとんどありません。なので、「面積の比で証明できる」くらいに覚えておくといいと思います。 メネラウスの定理の覚え方 でも、なんだかメネラウスの定理って、覚えにくいですよね。そこで、よく使われている メネラウスの定理の覚え方 を紹介します。 メネラウスの定理では、分母と分子がごっちゃになりがちです。そこで、下の図を見てください。 図のように、 キツネ型の耳から初めて、一筆書きでまた耳に戻ってくる ように番号を振ります。そして、番号の順に分子→分母→分子…と繰り返すと… $$\frac{➀}{➁}\times\frac{➂}{➃}\times\frac{➄}{➅} = 1$$ となります。これは覚えやすいですね? ちなみに、メネラウスの定理はキツネ型ならどこからでも始めることができます。例えば、Pから始めるとしたら、次のような感じです。 この例だと、 $$\frac{PC}{CB}\times\frac{BA}{AR}\times\frac{RQ}{QP}=1 $$ となります。 このように、反対の耳から反対周りにやることもできます。 ちなみに、最後は結局1になるので、➀を分母から初めて分母→分子→分母… としても、逆にしても結果は同じです。間違えやすいので自分でどちらから始めるか決めておくといいですよ!

【高校数学】「チェバの定理」と「メネラウスの定理」の証明と覚え方 | スタディ・タウン 学び情報局

数学にゃんこ

Cmの解答 | 富山県の家庭教師・個別指導なら | 【公式】富山県家庭教師協会

【問題2】 (選択肢の中から正しいものを1つクリック) (1) △ABC の内部に点 O をとり, O と頂点 A, B, C を結ぶ直線がそれぞれ辺 AB, BC, CA と交わる点を P, Q, R とする. AP:PB=1:2, AR:RC=1:1 であるとき, BQ:QC を最も簡単な整数の比で表してください. (解答) (チェバの定理を覚えている場合) チェバの定理により が成り立つから BQ:QC=2:1 …(答) (別解) (中学生ならチェバの定理を覚えている必要はない.相似比を使って解けばよい) A から BC に平行な直線をひき, CP, BR の延長との交点を S, T とし, BQ=m, QC=n, SA=a, AT=b とおく a:(m+n)=1:2 b:(m+n)=1:1=2:2 a:b=1:2 m:n=b:a=2:1 …(答) (2) △ABC の内部に点 O をとり, O と頂点 A, B, C を結ぶ直線がそれぞれ辺 AB, BC, CA と交わる点を P, Q, R とする. AP:PB=3:4, BQ:QC=5:6 であるとき, CR:RA を最も簡単な整数の比で表してください. CMの解答 | 富山県の家庭教師・個別指導なら | 【公式】富山県家庭教師協会. CR:RA=8:5 …(答) a:11=3:4=3m:4m b:11=n:m=4n:4m a:b=6:5=3m:4n 24n=15m m:n=8:5 …(答) **チェバの定理は右図のように点 O が △ABC の外部にある場合にも成り立ちます** △ABC の辺上にない1点 O をとり, O と頂点 A, B, C を結ぶ直線がそれぞれ辺 AB, BC, CA またはその延長と交わる点を P, Q, R とするとき,次の式が成り立つ. ※証明略 (3) 右図のように △ABC の外部に点 O をとり, O と頂点 A, B, C を結ぶ直線がそれぞれ辺 AB, BC, CA またはその延長と交わる点を P, Q, R とする. PA:AB=2:3, BC:CQ=2:1 であるとき, CR:RA を最も簡単な整数の比で表してください. CR:RA=5:6 …(答) ただし,筆者がやっても苦労するぐらいなので,中学生が解くにはかなり難しいかもしれない. できなくても,涼しい顔ということで・・・ A から BC に平行な直線をひき, CP との交点を S , BR の延長との交点を T とし, CR=m, RA=n, SA=a, ST=b とおく b:2=2:5 b:a=1:2 …(答)

東大塾長の山田です。 このページでは、 「 メネラウスの定理 」について解説します 。 メネラウスの定理とその証明、さらにメネラウスの定理の逆の証明を、イラスト付きで丁寧にわかりやすく解説していきます 。 また、さいごにはメネラウスの定理を利用する練習問題も用意しているので、ぜひ最後まで読んで「メネラウスの定理」をマスターしてください! 1. メネラウスの定理とは? まずはメネラウスの定理とは何か説明します。 2. メネラウスの定理の覚え方! メネラウスの定理はパッと見は分数が多くて複雑そうですが、本質を理解していればめちゃめちゃシンプルで覚えやすいです。 メネラウスの定理は 、定義でも述べた通り 「三角形と直線」からなる定理です 。 「三角形の頂点→直線上の点(分点)→三角形の頂点→直線上の点(分点)→ \( \cdots \)」の順に、交互にたどっていき分数にすれば、メネラウスの定理の式になります! 上の図ではわかりやすいように、 三角形の頂点を赤 、 直線上の点(分点)を青 で表しています。 \( \color{red}{ \mathrm{ A}} \)からスタートして、「 頂点 → 分点 → 頂点 → 分点 → 頂点 → 分点 」の順で「分子→分母→分子→分母→分子→分母」と式を立てれば、メネラウスの定理 \( \displaystyle \frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1 \) となります。 上の例では頂点の\( \mathrm{ A} \)からスタートしましたが、その他の頂点・分点(\( \mathrm{ B, C, P, Q, R} \))どこからでもOKですし、逆回りでもOKですよ! 頂点→分点の交互さえ守ればOKです! 3.

他にも\(16x^2-4\)なんかは危険です。 これを因数分解すると・・・ \((4x)^2-2^2\)とみて \((4x+2)(4x-2)\)と、ドヤ顔で書いちゃう子がいますが残念ながら間違いです。 この問いの場合もまずは共通因数でくくります。 \(4(4x^2-1)\) \(=4(2x+1)(2x-1)\)で正解となります。 \(4x+2)(4x-2)\)を正解にもっていくには、 \((4x+2)\)と\((4x-2)\)はどちらも共通因数が\(2\)です。 共通因数でくくって \(2(2x+1) \times 2(2x-1)\)となり、整理して… \(4(2x+1)(2x-1)\)となり正解と一緒になります。 はじめに共通因数でくくってもくくらなくても成果にはたどり着けますが、解き始めに共通因数でくくるのが簡単です。 何度も言いますが、因数分解で1番最初にすることは共通因数でくくることです。 まとめ 今回は高校入試でよく忘れがちな共通因数でくくることをメインにしました。 因数分解を習いたてのときは共通因数でくくることを忘れにくいのですが、これが高校入試問題の演習になるとコロッと忘れちゃうことが多くなります。 共通因数でくくることを忘れて因数分解が出来てしまった場合は答えっぽいものができあがることがあるので、絶対に忘れちゃダメですよ。

まとめすぎた高校入試の因数分解難問~難関私立の問題 | 猫に数学

高校の因数分解はパターンが多いね。 たくさん練習して、解法を身につけておきましょう。 ザっと説明をしてきましたが、分かりにくい点などありましたらコメント欄からご要望ください。 その場合には動画解説もつけようと思いますので(^^)

【中3数学】整数問題の良問とその解説! 難関私立高校過去問より ~定期テストや高校入試に~ - レオンの中学数学探検所

高校入試の数学で最も確実に点を取りたいのは大問1。 易しい計算問題がたくさん出題されるためなるべく多くの得点を稼いでおきたいところです。 特に単純な計算問題や因数分解は確実に解けるようにしておきたいですよね。 今回は、その中でも因数分解の解き方について書いていきます。 高校入試の大問1の因数分解は美味しい? 高校入試の大問1では計算問題を中心に点数が簡単に取れる問いの宝庫です。 きちんと勉強していればたいていの問題はきちんと解けるはずです。 (解けない場合はきちんと解けるように練習しましょう。) ただ計算するだけの問題や単純な因数分解だけで解けてしまう問題が多く出ます。 ある程度数学ができる子だとほとんどできると思うのですが、やはりちょくちょく間違ってしまうことがあります。 計算だけ因数分解だけ問題は少ししか出ないのでもったいない! まとめすぎた高校入試の因数分解難問~難関私立の問題 | 猫に数学. 因数分解の中学で習う公式は? 因数分解の公式といえば、 $$x^2+(a+b)x+ab=(x+a)(x+b)$$ $$x^2+2ax+a^2=(x+a)^2$$ $$x^2-2ax+a^2=(x-a)^2$$ $$x^2-a^2=(x+a)(x-a)$$ こんな公式を思い浮かべると思います。 でも、これだけで考えると意外と因数分解できなかったり、間違えたりします。 因数分解の問題では解けるというだけなく正確性も大事です。 なんとなく因数分解をしていると間違いが増えるのでしっかりやり方を覚えましょう! 因数分解を解く中学生のためのコツとは?

というときには、 次数の低い文字について整理する ようにしましょう。 次の式を因数分解せよ。 $$x^2+xy-5x-y+4$$ パッと見たときにどうやら置き換えはできそうにないですね。 そんなときには、式を次数の低い文字で整理してみましょう。 今回の式であれば \(y\)の次数が低いので、\(y\)について式を整理していきましょう。 次数や式の整理について不安な方は、こちらの記事をご参考に! ⇒ 文字に着目したときの次数、係数の求め方は?? ⇒ 降べきの順のやり方をイチから!同じ次数や定数項はかっこでくくるようにしよう $$\begin{eqnarray}&&x^2+xy-5x-y+4\\[5pt]&=&(x-1)y+(x^2-5x+4)\\[5pt]&=&(x-1)y+(x-4)(x-1)\\[5pt]&=&(x-1)\{y+(x-4)\}\\[5pt]&=&(x-1)(x+y-4)\cdots(解) \end{eqnarray}$$ このように次数の低い文字で式を整理すると、なんとなく道筋が見えてくるようになります。 あとはその道筋に沿って因数分解を続けていけばOKです。 困ったときには式の整理! 次の式を因数分解せよ。 $$x^2-xy-2y^2-x-7y-6$$ 今回の問題では、\(x, y\)ともに次数が2となっています。 こういう場合にはどちらの文字で整理してもOKですが、基本的には\(x\)で整理していくとよいでしょう。 $$\begin{eqnarray} &&x^2-xy-2y^2-x-7y-6\\[5pt]&=&x^2-(y+1)x-2y^2-7y-6\\[5pt]&=&x^2-(y+1)x-(2y^2+7y+6)\\[5pt]&=&x^2-(y+1)x-(2y+3)(y+2)\end{eqnarray}$$ ここまで持ってくることができれば、あとは式のたすき掛けをやっていくことになります。 $$\begin{eqnarray}&&x^2-(y+1)x-(2y+3)(y+2)\\[5pt]&=&\{x-(2y+3)\}\{x+(y+2)\}\\[5pt]&=&(x-2y-3)(x+y+2)\cdots(解) \end{eqnarray}$$ 多項式のたすき掛けはちょっと難しいですが、大事な問題なのでたくさん練習しておきましょう!